Kinematic Precise Point Positioning Using Multi-Constellation Global Navigation Satellite System (GNSS) Observations

نویسندگان

  • Xidong Yu
  • Jingxiang Gao
چکیده

Multi-constellation global navigation satellite systems (GNSSs) are expected to enhance the capability of precise point positioning (PPP) by improving the positioning accuracy and reducing the convergence time because more satellites will be available. This paper discusses the performance of multi-constellation kinematic PPP based on a multi-constellation kinematic PPP model, Kalman filter and stochastic models. The experimental dataset was collected from the receivers on a vehicle and processed using self-developed software. A comparison of the multi-constellation kinematic PPP and real-time kinematic (RTK) results revealed that the availability, positioning accuracy and convergence performance of the multi-constellation kinematic PPP were all better than those of both global positioning system (GPS)-based PPP and dual-constellation PPP. Multi-constellation kinematic PPP can provide a positioning service with centimetre-level accuracy for dynamic users.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning

Benefits from the modernized US Global Positioning System (GPS), the revitalized Russian GLObal NAvigation Satellite System (GLONASS), and the newly-developed Chinese BeiDou Navigation Satellite System (BDS) and European Galileo, multi-constellation Global Navigation Satellite System (GNSS) has emerged as a powerful tool not only in positioning, navigation, and timing (PNT), but also in remote ...

متن کامل

Real-time Kinematic Positioning of INS Tightly Aided Multi-GNSS Ionospheric Constrained PPP

Real-time Precise Point Positioning (PPP) technique is being widely applied for providing precise positioning services with the significant improvement on satellite precise products accuracy. With the rapid development of the multi-constellation Global Navigation Satellite Systems (multi-GNSS), currently, about 80 navigation satellites are operational in orbit. Obviously, PPP performance is dra...

متن کامل

Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams

The multi-constellation Global Navigation Satellite Systems (GNSS) offers promising potential for the retrieval of real-time (RT) atmospheric parameters to support time-critical meteorological applications, such as nowcasting or regional short-term forecasts. In this study, we processed GNSS data from the globally distributed Multi-GNSS Experiment (MGEX) network of about 30 ground stations by u...

متن کامل

A New GNSS Single-Epoch Ambiguity Resolution Method Based on Triple-Frequency Signals

Fast and reliable ambiguity resolution (AR) has been a continuing challenge for real-time precise positioning based on dual-frequency Global Navigation Satellite Systems (GNSS) carrier phase observation. New GNSS systems (i.e., GPS modernization, BDS (BeiDou Navigation Satellite System), GLONASS (Global Navigation Satellite System), and Galileo) will provide multiple-frequency signals. The GNSS...

متن کامل

An Optimal Tropospheric Tomography Method Based on the Multi-GNSS Observations

Aside from the well-known applications (positioning, navigation and timing) brought by Global Navigation Satellite System (GNSS), reconstruction of tropospheric atmosphere distribution information using tomography technique based on the multi-GNSS observations has been developed as a research point in the fields of GNSS Meteorology. In this paper, an optimal tropospheric tomography method using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017